Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Sci Rep ; 13(1): 8859, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-20242801

ABSTRACT

Bronchoalveolar lavage (BAL) is becoming a common procedure for research into infectious disease immunology. Little is known about the clinical factors which influence the main outcomes of the procedure. In research participants who underwent BAL according to guidelines, the BAL volume yield, and cell yield, concentration, viability, pellet colour and differential count were analysed for association with important participant characteristics such as active tuberculosis (TB) disease, TB exposure, HIV infection and recent SARS-CoV-2 infection. In 337 participants, BAL volume and BAL cell count were correlated in those with active TB disease, and current smokers. The right middle lobe yielded the highest volume. BAL cell and volume yields were lower in older participants, who also had more neutrophils. Current smokers yielded lower volumes and higher numbers of all cell types, and usually had a black pellet. Active TB disease was associated with higher cell yields, but this declined at the end of treatment. HIV infection was associated with more bloody pellets, and recent SARS-CoV-2 infection with a higher proportion of lymphocytes. These results allow researchers to optimise their participant and end assay selection for projects involving lung immune cells.


Subject(s)
COVID-19 , HIV Infections , Tuberculosis , Humans , Aged , Bronchoalveolar Lavage Fluid , SARS-CoV-2 , Bronchoalveolar Lavage
2.
Respir Res ; 24(1): 152, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20233721

ABSTRACT

COVID-19-related acute respiratory distress syndrome (CARDS) is associated with high mortality rates. We still have limited knowledge of the complex alterations developing in the lung microenvironment. The goal of the present study was to comprehensively analyze the cellular components, inflammatory signature, and respiratory pathogens in bronchoalveolar lavage (BAL) of CARDS patients (16) in comparison to those of other invasively mechanically ventilated patients (24). In CARDS patients, BAL analysis revealed: SARS-CoV-2 infection frequently associated with other respiratory pathogens, significantly higher neutrophil granulocyte percentage, remarkably low interferon-gamma expression, and high levels of interleukins (IL)-1ß and IL-9. The most important predictive variables for worse outcomes were age, IL-18 expression, and BAL neutrophilia. To the best of our knowledge, this is the first study that was able to identify, through a comprehensive analysis of BAL, several aspects relevant to the complex pathophysiology of CARDS.


Subject(s)
COVID-19 , Pneumonia , Respiratory Distress Syndrome , Humans , Prospective Studies , Bronchoalveolar Lavage Fluid , COVID-19/diagnosis , SARS-CoV-2 , Bronchoalveolar Lavage , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/metabolism
3.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(5): 441-443, 2023 May 12.
Article in Chinese | MEDLINE | ID: covidwho-2322410

ABSTRACT

We investigated the types of novel coronavirus strains present during the Omicron epidemic from late 2022 to early 2023, COVID-19 co-infections with other pathogens, and clinical characteristics of patients with novel coronavirus infections. Adult patients hospitalized due to SARS CoV-2 infection in six hospitals in Guangzhou city were included in the study from November 2022 to February 2023. Clinical information was collected and analyzed, and bronchoalveolar lavage fluid was obtained for pathogen detection using a variety of techniques, including standard methods and mNGS, tNGS. The results showed that the main strain circulating in Guangzhou was Omicron BA.5.2, and the overall detection rate of potentially pathogenic pathogens combined with Omicron COVID-19 infection was 49.8%. In patients with severe COVID-19 infection, special attention should be paid to aspergillosis and combined Mycobacterium tuberculosis infection. In additon, Omicron strain infection could cause viral sepsis, which led to a worse prognosis for COVID-19 patients. Diabetic patients with SARS-CoV-2 infection did not benefit from glucocorticoid treatment, and caution was necessary when using glucocorticoids. These findings highlighted some new features of severe Omicron coronavirus infection that should be noted.


Subject(s)
Aspergillosis , COVID-19 , Adult , Humans , SARS-CoV-2 , Bronchoalveolar Lavage Fluid , Glucocorticoids
4.
Adv Respir Med ; 91(3): 185-202, 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2326751

ABSTRACT

Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , COVID-19/complications , Antifungal Agents/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , SARS-CoV-2
5.
Clin Lab ; 69(5)2023 May 01.
Article in English | MEDLINE | ID: covidwho-2320515

ABSTRACT

BACKGROUND: Mucor infection cannot be ignored in patients with pulmonary shadowing with cavitation. This paper reports a case of mucormycosis during the COVID-19 pandemic in Hubei Province, China. METHODS: An anesthesiology doctor was initially diagnosed as COVID-19 due to changes in lung imaging. After anti-infective, anti-viral, and symptomatic supportive treatment, some of symptoms were relieved. But some symptoms -'chest pain and discomfort', accompanied by chest sulking and short breath after activities, did not ease. At last, Lichtheimia ramose was detected later by metagenomic next generation sequencing (mNGS) in the bronchoalveolar lavage fluid (BALF). RESULTS: After adjusting amphotericin B for anti-infective treatment, the patient's infection lesions were shrunk and the symptoms were significantly relieved. CONCLUSIONS: The diagnosis of invasive fungal infections is very difficult, and mNGS can make an accurate pathogenic diagnosis of invasive fungal diseases for the clinic and provide a basis for clinical treatment.


Subject(s)
COVID-19 , Invasive Fungal Infections , Mucormycosis , Pneumonia , Humans , Mucormycosis/diagnosis , Mucormycosis/epidemiology , Pandemics , China/epidemiology , Antiviral Agents , Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing
6.
BMC Pulm Med ; 23(1): 111, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2300637

ABSTRACT

BACKGROUND: Eosinophilic airway inflammation caused by respiratory virus infection has been demonstrated in basic research; however, clinical investigations are lacking. To clarify the extent to which respiratory virus infection induces airway eosinophilic inflammation, we reviewed the results of bronchoalveolar lavage (BAL) and respiratory virus testing performed at our hospital. METHODS: Among the BAL procedures performed at the University of the Ryukyu Hospital from August 2012 to September 2016, we collected cases of acute respiratory disease in which multiplex polymerase chain reaction (PCR) was used to search for respiratory viruses. The effect of respiratory virus detection on BAL eosinophil fraction was analyzed using statistical analysis. A case study was conducted on respiratory virus detection, which showed an elevated BAL eosinophil fraction. RESULTS: A total of 95 cases were included in this study, of which 17 were PCR-positive. The most common respiratory virus detected was parainfluenza virus (eight cases). The PCR-positive group showed a higher BAL eosinophil fraction than the PCR-negative group (p = 0.030), and more cases had a BAL eosinophil fraction > 3% (p = 0.017). Multivariate analysis revealed that being PCR-positive was significantly associated with BAL eosinophil fraction > 1% and > 3%. There were nine PCR-positive cases with a BAL eosinophil fraction > 1%, of which two cases with parainfluenza virus infection had a marked elevation of BAL eosinophil fraction and were diagnosed with eosinophilic pneumonia. CONCLUSIONS: Cases of viral infection of the lower respiratory tract showed an elevated BAL eosinophil fraction. The increase in eosinophil fraction due to respiratory virus infection was generally mild, whereas some cases showed marked elevation and were diagnosed with eosinophilic pneumonia. Respiratory virus infection is not a rare cause of elevated BAL eosinophil fraction and should be listed as a differential disease in the practice of eosinophilic pneumonia.


Subject(s)
Pulmonary Eosinophilia , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , Eosinophils , Inflammation , Pulmonary Eosinophilia/diagnosis , Respiratory Tract Infections/diagnosis , Retrospective Studies , Virus Diseases/diagnosis
7.
Medicine (Baltimore) ; 102(14): e33402, 2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2293413

ABSTRACT

Recent studies have reported that the lower airway microbiome may play an essential role in the development and progression of interstitial lung disease (ILD). The aim of the current study was to evaluate the characteristics of the respiratory microbiome and intrasubject variation in patients with ILD. Patients with ILD were recruited prospectively for 12 months. The sample size was small (n = 11) owing to delayed recruitment during the COVID-19 pandemic. All subjects were hospitalized and were evaluated by a questionnaire survey, blood sampling, pulmonary function test, and bronchoscopy. Bronchoalveolar lavage fluid (BALF) was obtained at 2 sites, the most and least disease-affected lesions. Sputum collection was also performed. Furthermore, 16S ribosomal RNA gene sequencing was performed using the Illumina platform and indexes of α- and ß-diversity were evaluated. Species diversity and richness tended to be lower in the most-affected lesion than in the least-affected lesion. However, taxonomic abundance patterns were similar in these 2 groups. The phylum Fusobacteria was more prevalent in fibrotic ILD than in nonfibrotic ILD. Inter-sample differences in relative abundances were more prominent in BALF versus sputum specimens. Rothia and Veillonella were more prevalent in the sputum than in BALF. We did not detect site-specific dysbiosis in the ILD lung. BALF was an effective respiratory specimen type for evaluating the lung microbiome in patients with ILD. Further studies are needed to evaluate the causal links between the lung microbiome and the pathogenesis of ILD.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Microbiota , Humans , Pandemics , COVID-19/complications , Lung Diseases, Interstitial/diagnosis , Lung , Bronchoalveolar Lavage Fluid/microbiology
8.
Inflamm Res ; 72(5): 929-932, 2023 May.
Article in English | MEDLINE | ID: covidwho-2250176

ABSTRACT

The blood levels of neutrophils are associated with the severity of COVID -19. However, their role in the pulmonary environment during COVID -19 severity is not clear. Here, we found a decrease in the neutrophil count in BAL (bronchoalveolar lavage) in non-survivors and in older patients (> 60 years). In addition, we have shown that older patients have higher serum concentration of CXCL8 and increased IL-10 expression by neutrophils.


Subject(s)
COVID-19 , Neutrophils , Humans , Aged , Bronchoalveolar Lavage Fluid , Lung , Prognosis
9.
Sci Rep ; 12(1): 21125, 2022 12 07.
Article in English | MEDLINE | ID: covidwho-2151109

ABSTRACT

To better understand the potential relationship between COVID-19 disease and hologenome microbial community dynamics and functional profiles, we conducted a multivariate taxonomic and functional microbiome comparison of publicly available human bronchoalveolar lavage fluid (BALF) metatranscriptome samples amongst COVID-19 (n = 32), community acquired pneumonia (CAP) (n = 25), and uninfected samples (n = 29). We then performed a stratified analysis based on mortality amongst the COVID-19 cohort with known outcomes of deceased (n = 10) versus survived (n = 15). Our overarching hypothesis was that there are detectable and functionally significant relationships between BALF microbial metatranscriptomes and the severity of COVID-19 disease onset and progression. We observed 34 functionally discriminant gene ontology (GO) terms in COVID-19 disease compared to the CAP and uninfected cohorts, and 21 GO terms functionally discriminant to COVID-19 mortality (q < 0.05). GO terms enriched in the COVID-19 disease cohort included hydrolase activity, and significant GO terms under the parental terms of biological regulation, viral process, and interspecies interaction between organisms. Notable GO terms associated with COVID-19 mortality included nucleobase-containing compound biosynthetic process, organonitrogen compound catabolic process, pyrimidine-containing compound biosynthetic process, and DNA recombination, RNA binding, magnesium and zinc ion binding, oxidoreductase activity, and endopeptidase activity. A Dirichlet multinomial mixtures clustering analysis resulted in a best model fit using three distinct clusters that were significantly associated with COVID-19 disease and mortality. We additionally observed discriminant taxonomic differences associated with COVID-19 disease and mortality in the genus Sphingomonas, belonging to the Sphingomonadacae family, Variovorax, belonging to the Comamonadaceae family, and in the class Bacteroidia, belonging to the order Bacteroidales. To our knowledge, this is the first study to evaluate significant differences in taxonomic and functional signatures between BALF metatranscriptomes from COVID-19, CAP, and uninfected cohorts, as well as associating these taxa and microbial gene functions with COVID-19 mortality. Collectively, while this data does not speak to causality nor directionality of the association, it does demonstrate a significant relationship between the human microbiome and COVID-19. The results from this study have rendered testable hypotheses that warrant further investigation to better understand the causality and directionality of host-microbiome-pathogen interactions.


Subject(s)
COVID-19 , Humans , Bronchoalveolar Lavage Fluid , Gene Ontology
10.
Cells ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2142561

ABSTRACT

Alveolar macrophage (AM) proliferation and self-renewal play an important role in the lung tissue microenvironment. However, the impact of immune cells, especially the neutrophils, on AM homeostasis or function is not well characterized. In this study, we induced in vivo migration of neutrophils into bronchoalveolar lavage (BAL) fluid and lung using CXCL1, and then co-cultured these with AMs in vitro. Neutrophils in the BAL (BAL-neutrophils), rather than neutrophils of bone marrow (BM-neutrophils), were found to inhibit AM proliferation. Analysis of publicly available data showed high heterogeneity of lung neutrophils with distinct molecular signatures of BM- and blood-neutrophils. Unexpectedly, BAL-neutrophils from influenza virus PR8-infected mice (PR8-neutrophils) did not inhibit the proliferation of AMs. Bulk RNA sequencing further revealed that co-culture of AMs with PR8-neutrophils induced IFN-α and -γ responses and inflammatory response, and AMs co-cultured with BAL-neutrophils showed higher expression of metabolism- and ROS-associated genes; in addition, BAL-neutrophils from PR8-infected mice modulated AM polarization and phagocytosis. BAL-neutrophil-mediated suppression of AM proliferation was abrogated by a combination of inhibitors of different neutrophil death pathways. Collectively, our findings suggest that multiple cell death pathways of neutrophils regulate the proliferation of AMs. Targeting neutrophil death may represent a potential therapeutic strategy for improving AM homeostasis during respiratory diseases.


Subject(s)
Macrophages, Alveolar , Neutrophils , Mice , Animals , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Bronchoalveolar Lavage Fluid , Lung , Cell Proliferation
11.
BMC Infect Dis ; 22(1): 822, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108749

ABSTRACT

BACKGROUND: Invasive pulmonary aspergillosis (IPA) is seen during coronavirus-2019 (COVID-19), has been reported in different incidences, and is defined as COVID-19-associated pulmonary aspergillosis (CAPA). Detection of galactomannan antigen is an important diagnostic step in diagnosing IPA. Enzyme-linked immunoassay (ELISA) is the most frequently used method, and lateral flow assay (LFA) is increasingly used with high sensitivity and specificity for rapid diagnosis. The present study aimed to compare the sensitivity of LFA and ELISA in the diagnosis of CAPA in COVID-19 patients followed in our hospital's ICU for pandemic (ICU-P). METHODS: This study included patients with a diagnosis of COVID-19 cases confirmed by polymerase chain reaction and were followed up in ICU-P between August 2021 and February 2022 with acute respiratory failure. The diagnosis of CAPA was based on the European Confederation of Medical Mycology (ECMM) and the International Society for Human and Animal Mycology 2020 (ECMM/ ISHAM) guideline. Galactomannan levels were determined using LFA and ELISA in serum samples taken simultaneously from the patients. RESULTS: Out of the 174 patients followed in the ICU-P, 56 did not meet any criteria for CAPA and were excluded from the analysis. The rate of patients diagnosed with proven CAPA was 5.7% (10 patients). A statistically significant result was obtained with LFA for the cut-off value of 0.5 ODI in the diagnosis of CAPA (p < 0.001). The same significant statistical relationship was found for the cut-off value of 1.0 ODI for the ELISA (p < 0.01). The sensitivity of LFA was 80% (95% CI: 0.55-1.05, p < 0.05), specificity 94% (95% CI: 0.89-0.98, p < 0.05); PPV 53% (95% CI: 0.28-0.79, p > 0.05) and NPV was 98% (95% CI: 0.95-1.01, p < 0.05). The risk of death was 1.66 (HR: 1.66, 95% CI: 1.02-2.86, p < 0.05) times higher in patients with an LFA result of ≥ 0.5 ODI than those with < 0.5 (p < 0.05). CONCLUSIONS: It is reckoned that LFA can be used in future clinical practice, particularly given its effectiveness in patients with hematological malignancies and accuracy in diagnosing CAPA.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , COVID-19/diagnosis , Bronchoalveolar Lavage Fluid , Invasive Pulmonary Aspergillosis/diagnosis , Pandemics , Mycology , Pulmonary Aspergillosis/diagnosis
12.
PLoS One ; 17(8): e0271870, 2022.
Article in English | MEDLINE | ID: covidwho-2079703

ABSTRACT

Proteome profile changes post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection in different body sites of humans remains an active scientific investigation whose solutions stand a chance of providing more information on what constitutes SARS-CoV-2 pathogenesis. While proteomics has been used to understand SARS-CoV-2 pathogenesis, there are limited data about the status of proteome profile in different human body sites infected by the SARS-CoV-2 virus. To bridge this gap, our study aims to characterize the proteins secreted in urine, bronchoalveolar lavage fluid (BALF), gargle solution, and nasopharyngeal samples and assess the proteome differences in these body samples collected from SARS-CoV-2-positive patients. We downloaded publicly available proteomic data from (https://www.ebi.ac.uk/pride/). The data we downloaded had the following identifiers: (i) PXD019423, n = 3 from Charles Tanford Protein Center in Germany. (ii) IPX0002166000, n = 15 from Beijing Proteome Research Centre, China. (iii) IPX0002429000, n = 5 from Huazhong University of Science and Technology, China, and (iv) PXD022889, n = 18 from Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA. MaxQuant was used for the human peptide spectral matching using human and SARS-CoV-2 proteome database which we downloaded from the UniProt database (access date 13th October 2021). The individuals infected with SARS-CoV-2 viruses displayed a different proteome diversity from the different body sites we investigated. Overally, we identified 1809 proteins across the four sample types we compared. Urine and BALF samples had significantly more abundant SARS-CoV-2 proteins than the other body sites we compared. Urine samples had 257(33.7%) unique proteins, followed by nasopharyngeal with 250(32.8%) unique proteins. Gargle solution and BALF had 38(5%) and 73(9.6%) unique proteins respectively. Urine, gargle solution, nasopharyngeal, and bronchoalveolar lavage fluid samples have different protein diversity in individuals infected with SARS-CoV-2. Moreover, our data also demonstrated that a given body site is characterized by a unique set of proteins in SARS-CoV-2 seropositive individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Bronchoalveolar Lavage Fluid , Humans , Mouthwashes , Proteome , Proteomics
13.
Rev Chilena Infectol ; 39(3): 248-253, 2022 06.
Article in Spanish | MEDLINE | ID: covidwho-2044073

ABSTRACT

BACKGROUND: The Aspergillus Galactomannan Ag Virclia® (GMVClia) test is a monotest and automated galactomannan technique based on chemiluminescent immunoassay (CLIA). AIM: To evaluate the performance of the GM-VClia test in serum and bronchioalveolar lavage (BAL) samples previously processed with the Platelia ™ Aspergillus EIA kit (GM-Plat). METHODS: 56 samples of serum 40 from BAL (some of them with galactomaman determination in both samples), from patients with pulmonary diseases, hematological diseases, SLE, Covid-19 and tumors, among others, were studied. Thirteen patients had invasive aspergillosis (1 proven and 12 probable). RESULTS: The correlation between both methods for serum and BAL was r = 0.8861 p < 0.0001 and r = 0.6368 p < 0.001, respectively. There was a global concordance of 67.7% (65/96), being 85.7% (48/56) in sera and 42.5.0% (14/49) in BAL. By raising the cut-off point in LBA by GM-VClia, the agreement increased to 85.7%. CONCLUSION: A greater correlation and concordance was observed in sera than in BAL. The GM-VClia kit had a higher sensitivity and NPV than the GM-Plat kit. The disadvantages of GM-VClia are the "doubtful" category, which makes interpretation difficult and that with the current cut-off points in LBA the correlation with GM-Plat is lower. The advantages are its greater sensitivity, ease of processing and faster results.


Subject(s)
COVID-19 , Aspergillus , Bronchoalveolar Lavage Fluid , Galactose/analogs & derivatives , Humans , Mannans , Sensitivity and Specificity
14.
EBioMedicine ; 83: 104195, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035960

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor, a critical component of the kallikrein-kinin system. Its dysregulation may lead to increased vascular permeability and release of inflammatory chemokines. Interactions between the kallikrein-kinin and the coagulation system might further contribute to thromboembolic complications in COVID-19. METHODS: In this observational study, we measured plasma and tissue kallikrein hydrolytic activity, levels of kinin peptides, and myeloperoxidase (MPO)-DNA complexes as a biomarker for neutrophil extracellular traps (NETs), in bronchoalveolar lavage (BAL) fluid from patients with and without COVID-19. FINDINGS: In BAL fluid from patients with severe COVID-19 (n = 21, of which 19 were mechanically ventilated), we observed higher tissue kallikrein activity (18·2 pM [1·2-1535·0], median [range], n = 9 vs 3·8 [0·0-22·0], n = 11; p = 0·030), higher levels of the kinin peptide bradykinin-(1-5) (89·6 [0·0-2425·0], n = 21 vs 0·0 [0·0-374·0], n = 19, p = 0·001), and higher levels of MPO-DNA complexes (699·0 ng/mL [66·0-142621·0], n = 21 vs 70·5 [9·9-960·0], n = 19, p < 0·001) compared to patients without COVID-19. INTERPRETATION: Our observations support the hypothesis that dysregulation of the kallikrein-kinin system might occur in mechanically ventilated patients with severe pulmonary disease, which might help to explain the clinical presentation of patients with severe COVID-19 developing pulmonary oedema and thromboembolic complications. Therefore, targeting the kallikrein-kinin system should be further explored as a potential treatment option for patients with severe COVID-19. FUNDING: Research Foundation-Flanders (G0G4720N, 1843418N), KU Leuven COVID research fund.


Subject(s)
COVID-19 , Kallikrein-Kinin System , Angiotensin-Converting Enzyme 2 , Bradykinin , Bronchoalveolar Lavage Fluid , Humans , Kallikreins/metabolism , Peroxidase/metabolism , SARS-CoV-2 , Tissue Kallikreins/metabolism
15.
Biomed Res Int ; 2022: 3510423, 2022.
Article in English | MEDLINE | ID: covidwho-2020494

ABSTRACT

Purpose: Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods: In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results: According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion: The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.


Subject(s)
Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Dipeptides/pharmacology , Lipopolysaccharides/adverse effects , Lung/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/pathology , Proto-Oncogene Proteins c-akt/metabolism
16.
Mycoses ; 65(10): 960-968, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1992875

ABSTRACT

BACKGROUND: Galactomannan Enzyme Immunoassay (GM-EIA) is proved to be a cornerstone in the diagnosis of COVID-19-associated pulmonary aspergillosis (CAPA), its use is limited in middle and low-income countries, where the application of simple and rapid test, including Galactomannan Lateral Flow Assay (GM-LFA), is highly appreciated. Despite such merits, limited studies directly compared GM-LFA with GM-EIA. Herein we compared the diagnostic features of GM-LFA, GM-EIA and bronchoalveolar lavage (BAL) culture for CAPA diagnosis in Iran, a developing country. MATERIALS/METHODS: Diagnostic performances of GM-LFA and GM-EIA in BAL (GM indexes ≥1) and serum (GM indexes >0.5), i.e. sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and areas under the curve (AUC), were evaluated using BAL (n = 105) and serum (n = 101) samples from mechanically ventilated COVID-19 patients in intensive care units. Patients were classified based on the presence of host factors, radiological findings and mycological evidences according to 2020 ECMM/ISHAM consensus criteria for CAPA diagnosis. RESULTS: The Aspergillus GM-LFA for serum and BAL samples showed a sensitivity of 56.3% and 60.6%, specificity of 94.2% and 88.9%, PPV of 81.8% and 71.4%, NPV of 82.3% and 83.1%, when compared with BAL culture, respectively. GM-EIA showed sensitivities of 46.9% and 54.5%, specificities of 100% and 91.7%, PPVs of 100% and 75%, NPVs of 80.2% and 81.5% for serum and BAL samples, respectively. CONCLUSION: Our study found GM-LFA as a reliable simple and rapid diagnostic tool, which could circumvent the shortcomings of culture and GM-EIA and be pivotal in timely initiation of antifungal treatment.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Antifungal Agents , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/diagnosis , COVID-19 Testing , Galactose/analogs & derivatives , Humans , Immunoenzyme Techniques , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Mannans , Sensitivity and Specificity
17.
Sci Rep ; 12(1): 9502, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1984415

ABSTRACT

The local immune-inflammatory response elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still poorly described, as well as the extent to which its characteristics may be associated with the outcome of critical Coronavirus disease 2019 (COVID-19). In this prospective monocenter study, all consecutive COVID-19 critically ill patients admitted from February to December 2020 and explored by fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) were included. Biological assays, including digital ELISA cytokine profiling and targeted eicosanoid metabolomic analysis, were performed on paired blood and BAL fluid (BALF). Clinical outcome was assessed through the World Health Organization 10-point Clinical Progression Scale (WHO-CPS) at the 28th day (D28) following the admission to intensive care unit. A D28-WHO-CPS value higher than 5 defined a poor outcome. Seventy-six patients were included, 45 (59%) had a poor day-28 outcome. As compared to their counterparts, patients with D28-WHO-CPS > 5 exhibited a neutrophil-predominant bronchoalveolar phenotype, with a higher BALF neutrophil/lymphocyte ratio, a blunted local type I interferon response, a decompartimentalized immune-inflammatory response illustrated by lower BALF/blood ratio of concentrations of IL-6 (1.68 [0.30-4.41] vs. 9.53 [2.56-19.1]; p = 0.001), IL-10, IL-5, IL-22 and IFN-γ, and a biological profile of vascular endothelial injury illustrated by a higher blood concentration of VEGF and higher blood and/or BALF concentrations of several vasoactive eicosanoids. In critically ill COVID-19 patients, we identified bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome.


Subject(s)
COVID-19 , Biomarkers , Bronchoalveolar Lavage Fluid , Critical Illness , Humans , Prospective Studies , SARS-CoV-2
18.
Parasitol Res ; 121(10): 3013-3017, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1982152

ABSTRACT

This study aimed to investigate the presence and genotyping of Acanthamoeba spp., in the bronchoalveolar lavage fluid (BALF) of immunocompetent patients with chronic respiratory disorders (CRD). In this study, 211 BALF samples were collected from patients with CRD during the COVID-19 pandemic who were candidates for fiberoptic bronchoscopy (FOB) at Imam Khomeini Hospital, Sari, Mazandaran Province, northern Iran and investigated for Acanthamoeba spp., by PCR. A total of 211 FBAL samples were examined; 5 (5/211; 2.36%) were positive by using the PCR test for Acanthamoeba spp. According to sequence analysis, three strains belonged to the T4 genotype and one strain to the T2 genotype. Our data demonstrate that the presence of Acanthamoeba (T4 and T2) in BALF specimens of patients with respiratory infections. However, it is important to note that these findings may be merely accidental. Our findings suggest further investigation to fully understand the role of Acanthamoeba spp. in the pathogenesis of lung infections.


Subject(s)
Acanthamoeba , COVID-19 , Acanthamoeba/genetics , Bronchoalveolar Lavage Fluid , Genotype , Humans , Pandemics , RNA, Ribosomal, 18S/genetics
19.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: covidwho-1934078

ABSTRACT

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) initiates the cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1ß in human lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10 expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3 inflammasome inhibitor and the NLRP3-/- mouse model. This study demonstrated that SARS-CoV SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation, providing the potential therapeutic targets for developing the antiviral agents.


Subject(s)
Chemokine CXCL10/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Proteins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Chemokine CXCL10/genetics , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pneumonia/pathology , Pneumonia/virology , Promoter Regions, Genetic , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Up-Regulation , Viral Proteins/chemistry , Viral Proteins/genetics
20.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: covidwho-1934924

ABSTRACT

Alveolar macrophages (AMs) reside on the luminal surface of the airways and alveoli, ensuring proper gas exchange by ingesting cellular debris and pathogens, and regulating inflammatory responses. Therefore, understanding the heterogeneity and diverse roles played by AMs, interstitial macrophages, and recruited monocytes is critical for treating airway diseases. We performed single-cell RNA sequencing on 113,213 bronchoalveolar lavage cells from four healthy and three uninflamed cystic fibrosis subjects and identified two MARCKS+LGMN+IMs, FOLR2+SELENOP+ and SPP1+PLA2G7+ IMs, monocyte subtypes, DC1, DC2, migDCs, plasmacytoid DCs, lymphocytes, epithelial cells, and four AM superclusters (families) based on the gene expression of IFI27 and APOC2 These four AM families have at least eight distinct functional members (subclusters) named after their differentially expressed gene(s): IGF1, CCL18, CXCL5, cholesterol, chemokine, metallothionein, interferon, and small-cluster AMs. Interestingly, the chemokine cluster further divides with each subcluster selectively expressing a unique combination of chemokines. One of the most striking observations, besides the heterogeneity, is the conservation of AM family members in relatively equal ratio across all AM superclusters and individuals. Transcriptional data and TotalSeq technology were used to investigate cell surface markers that distinguish resident AMs from recruited monocytes. Last, other AM datasets were projected onto our dataset. Similar AM superclusters and functional subclusters were observed, along with a significant increase in chemokine and IFN AM subclusters in individuals infected with COVID-19. Overall, functional specializations of the AM subclusters suggest that there are highly regulated AM niches with defined programming states, highlighting a clear division of labor.


Subject(s)
Apolipoprotein C-II , Macrophages, Alveolar , Membrane Proteins , Apolipoprotein C-II/metabolism , Bronchoalveolar Lavage Fluid , Chemokines , Humans , Macrophages, Alveolar/metabolism , Membrane Proteins/metabolism , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL